
IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                                DOI 10.17148/IJARCCE.2015.41143                                                    190 

Natural Language Database Interface 
 

Asst. Prof. Rakhee Kundu
1
, Asst. Prof. Poonam Gholap

2
, Asst. Prof. Snehal Mane

3 

Computer Engineering, VESIT, Affiliated to Mumbai University, India 
1, 2, 3 

 

Abstract: Databases have become ubiquitous. Almost all IT applications are storing and retrieving information from 

databases. Retrieving information from the database requires knowledge of technical languages such as Structured 

Query Language (SQL). However majority of the users who interact with the databases do not have a technical 

background and are intimidated by the idea of using languages such as SQL. This has led to the development of a few 

Natural Language Database Interfaces (NLDBI). A NLDBI allows the user to query the database in a natural language 

(NL). This dissertation work highlights on architecture of new NLDBI system, which includes designing a grammar 

which convert NL statement to a machine understandable language like a query which is fired on a database, 

constructing parse tree/s and analyzing them. In most of the typical NLDBI systems the NL statement is converted into 

an internal representation based on the syntactic and semantic knowledge of the NL. This representation is then 

converted into queries using a representation converter. Before a NL query is translated to an equivalent query in 

technical language like SQL it has to go through various steps. In this paper it highlights the steps of speech tagging 

followed by tagging of each word of the query, parsing the tagged sentence by a grammar and generating a grammar 

tree (parse tree) by applying the semantic analysis on that parse tree and finally SQL translator processes the parse tree 

to obtain the SQL query. 
 

Keywords: Natural Language, Database, SQL Query, Speech tagging, Parse tree. 
 

I. INTRODUCTION 
 

Databases have become ubiquitous. Almost all IT 

applications are storing and retrieving information from 

databases. Retrieving information from the database 

requires knowledge of technical languages such as 

Structured Query Language (SQL). However majority of 

the users who interact with the databases do not have a 

technical background and are intimidated by the idea of 

using languages such as SQL. This has led to the 

development of a few Natural Language Database 

Interfaces (NLDBI). A NLDBI allows the user to query 

the database in a natural language (NL). This dissertation 

work highlights on architecture of new NLDBI system, 

which includes designing a grammar which convert NL 

statement to a machine understandable language like a 

query which is fired on a database, constructing parse 

tree/s and analyzing them. In most of the typical NLDBI 

systems the NL statement is converted into an internal 

representation based on the syntactic and semantic 

knowledge of the NL. This representation is then 

converted into queries using a representation converter. 

Before a NL query is translated to an equivalent query in 

technical language like SQL it has to go through various 

steps. This dissertation work highlights the steps of speech 

tagging followed by tagging of each word of the query, 

parsing the tagged sentence by a grammar and generating 

a grammar tree (parse tree) by applying the semantic 

analysis on that parse tree and finally SQL translator 

processes the parse tree to obtain the SQL query. 
 

II. PROBLEM DEFINITION AND METHODOLOGY 

ADAPTED 
 

Natural language computing (NLC) is becoming one of 

the most active areas in Human-Computer Interaction. The 

goal of NLC is to enable communication between people 

and computers without resorting to memorization of  

 
 

complex commands and procedures. In other words, NLC 

is a technique which can make the computer understand 

the languages naturally used by humans, but not by 

artificial or man-made language such as a programming 

language. This paper describes a NL interface that 

supports complex queries based on a grammar to relational 

database 
 

A. Formalization of the Problem 

The query to databases in NL is a very convenient and 

easy method of data access, especially for those persons 

who do not have a technical background of database query 

languages such as SQL. The experimental work is based 

on a unique concept of processing user NL statement, 

converting into a technical form so as to access the data 

from relational data storage, to generate unambiguous 

results. NLDBI is a system that allows users to access a 

database in NL and has been a popular field of study. The 

user has to access database in NLs. The attempt in the 

present work is to create simple reliable NL interface to 

relational databases.  

If we consider an employee database and if the person 

wants to find his salary, he queries on to the database to 

get suitable results. A common man can have variety of 

NL queries like: 

 What is the salary of Nikhil Karande? 

 What is the salary of id 123? 

 What is the salary of employee with id 123 and 

the name Nikhil Karande? 

 What is the salary of employee with id 123?   

  What is the earning of employee id 123? 
 

B. Techniques and Methodologies:  

NLDBI is a system that allows users to access a database 

in NL. Suppose we consider a properly normalized 

database. Now if the user wishes to access the data from 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                                DOI 10.17148/IJARCCE.2015.41143                                                    191 

the table, he/she accesses the tables in his/her language. 

The different techniques and methodologies discussed 

below  
 

i) Domain Class Dictionary: 

In practice, a particular database structure is created from 

a certain conceptual model about real application domain. 

This conceptual model is well known to database 

communities as a semantic data model (SDM) which is 

today used in any medium-sized legacy database creation. 

SDM is structurally almost transparent to a physical 

database structure, since the two structures can be 

transformed into each other automatically. In addition, 

each component of SDM is annotated with some linguistic 

descriptions. There are two types of linguistic descriptions 

in SDM, domain surrogates and domain propositions. 

Domain surrogates are noun phrases for naming each 

SDM component, such as „customer‟, or „date of order‟. 

Domain propositions are definitional information about a 

certain domain reality, expressed by one NL sentence [14]. 

These linguistic annotations of SDM have the potential to 

conceptually bridge a NL question and a target database 

structure. Based on SDM, this section describes a 

linguistically motivated database semantics representation 

(LDBS), which consists of domain class dictionary and 

domain thematic frames. Among other SDMs, the E-R 

model is selected because it is currently the most popular 

modeling methodology and well established for real 

practical databases. In practice, some SDMs can lack 

linguistic annotations. However, it is not severe because a 

database designer can make descriptions easily with the 

help of commercial database modeling tools.  
 

We call each SDM component a domain class. That is, 

domain classes of an E-R model correspond to entities, 

attributes, and relationships, which are the main building 

blocks of the E-R model. Each domain class except 

relationship types can be viewed equivalently as one 

physical database structure such as a table or a column. 

Thus, in this work, domain classes and database structures 

are used interchangeably. Domain class dictionary (DCD) 

has a linguistic term for its dictionary entry term, and a set 

of corresponding domain classes for its content. For each 

domain surrogate in SDM, DCD entry words are obtained 

from its nominal variations, and the associated SDM 

component (a domain class) becomes DCD content. As an 

example, if an entity „dCUSTOMER‟ has a domain 

surrogate „customer‟, the resulting DCD will be 

<customer: {TB_CUSTOMER}>. In this case, given a 

question „Who ordered a refrigerator yesterday?‟ a 

linguistic concept „cPERSON‟ for „who‟ is translated into 

a table name „TB_CUSTOMER‟ by conceptually 

matching „cPERSON‟ with a DCD entry „customer‟. DCD 

entries are anticipated to cover representative domain 

terminologies since they are extracted from SDM that is 

assumed to contain representative linguistic descriptions 

about a target database domain. 
 

ii) Augmented Transition Network:  

The ATN parser differs in two important respects from the 

finite state grammar. Firstly, the arcs of one finite state 

network may be labeled with the names of other networks; 

thus, in the extremely simple grammar of three networks 

displayed in Figure 2.2 below, transition to state 2 requires 

the first word of a sentence (S) to be an aux(iliary verb), 

while transition to state 1 or from state 2 to 3 requires the 

satisfactory completion of the NP network, i.e. testing for 

the categories „pron(oun)‟, „det(erminer)‟, „n(oun)‟ and 

reaching state 7 or state 8. The optional PP network – its 

optionality indicated by an arc looping back to the same 

state – requires the testing for„prep (osition)‟ and again the 

satisfactory completion of the NP network. As such, this 

parser would still be no more powerful than a phrase 

structure grammar. It can in fact be made equivalent to a 

transformational grammar. 
 

 
 

 
 

 
 

Figure 1. Partial ATN grammars. 
 

Its „transformational‟ capability is achieved by adding 

tests and conditions to the arcs and by specifying „building 

instructions‟ to be executed if the arc is followed. Thus, 

for example, transition of arc „aux‟ to state 2 would 

specify the building  of the first elements of an 

interrogative (phrase) structure, which could be confirmed 

or rejected by the conditions or instructions associated 

with other arcs. Likewise, the transition of an arc 

recognizing a passive verb form would specify the 

building of elements of a passive construction to be 

confirmed or rejected as later information is acquired. 
 

One of the principal attractions of ATN parsers is that they 

are by no means restricted to syntactic analysis. Indeed in 

AI systems they are commonly used for deriving semantic 

representations. Conditions may specify any type of 

linguistic data: thus, arcs can test for morphological 

elements (suffixes and verb endings) and for semantic 

categories („animate‟, „concrete‟, etc.); and instructions 

can build morphological analysis and semantic 

representations. Furthermore, because the arcs can be 

ordered, an ATN parser can make use of statistical data 

about the language and its grammatical and lexical 

structures. Normally ATN parsers operate top-down, with 

all the disadvantages that entails, principally in wasteful 

reiterated analysis of lower level constituents. However, it 

is also possible for ATN parsers to be implemented 

breadth-first, exploring all possible paths „in parallel‟, and 

thus minimizing backtracking routines.  



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                                DOI 10.17148/IJARCCE.2015.41143                                                    192 

iii) Context Free Grammar:  

The Context Free Grammar (CFG) has been used to 

describe a NL for a long time and it is the simplest 

statistical model to analyze NL. The NL sentences are 

transformed into a tree structure through CFG and the 

grammar tree is analyzed according to user‟s 

requirements. CFG is a more powerful method of 

describing language. CFG is used for understanding the 

relationship of terms such as noun, verb and preposition 

and their respective phrases leads to a natural recursion 

because noun phrases may appear inside verb phrases and 

vice versa. CFG can capture important aspects of these 

relationships. 

Consider a sentence w1m that is a sequence of words w1 w2 

w3…wm (ignoring punctuations) and each string wi in the 

sequence stands for a word in the sentence. The grammar 

tree of w1m can be generated by a set of pre-defined 

grammar rules; usually more than one grammar tree may 

be generated. The importance of CFG has a formalization 

capability in describing most sentence structures and also 

CFG is so well formed that efficient sentence parser could 

be built on top of it. 
 

iv) LEX and YACC 

Yet another compilers compiler (YACC) is a parser. The 

code a grammar and input it to YACC. YACC will read 

the given grammar and generate C code for a syntax 

analyzer or parser. The syntax analyzer uses grammar 

rules that allow it to analyze tokens from the lexical 

analyzer and create a syntax tree. The syntax tree imposes 

a hierarchical structure the tokens. The next step, code 

generation, does a depth-first walk of the syntax tree to 

generate code. Some compilers produce machine code, 

while others, output assembly language. 

LEX is a lexical analysis tool based on the theory of 

regular expressions, taking a stream of text and 

transforming it to a stream of tokens. YACC is a context 

free grammar based parser, taking a stream of tokens and 

producing a tree of tokens. Typically a stream would be 

parsed once with LEX, and then the lexemes generated 

would be parsed with YACC. These tools are designed to 

fit together in a natural manner, with similar conventions 

to each other, and an easy mechanism for their 

combination. Both LEX and YACC take as input a syntax 

file describing the language, and produce as output a C file 

that can be used to parse the language. A compiler is then 

needed to turn this C file into executable code, and parse 

the instructions embedded in the language description 

which are included in C code. 
 

v) Parser: 

A parser is one of the components in an interpreter or 

compiler, which checks for correct syntax and builds a 

data structure (often some kind of parse tree, abstract 

syntax tree or other hierarchical structure) implicit in the 

input tokens. The parser often uses a separate lexical 

analysis to create tokens from the sequence of input 

characters. Parsers may be programmed by hand or may 

be semi-automatically generated (in some programming 

language) by a tool (such as YACC) from a grammar 

written in Backus-Naur form. 

The task of the parser is essentially to determine if and 

how the input can be derived from the start symbol of the 

grammar. This can be done in essentially two ways: 

 Top-down parsing - Top-down parsing can be viewed as 

an attempt to find left-most derivations of an input-

stream by searching for parse trees using a top-down 

expansion of the given formal grammar rules. Tokens 

are consumed from left to right. Inclusive choice is used 

to accommodate ambiguity by expanding all alternative 

right-hand-sides of grammar rules. LL parsers and 

recursive-descent parser are examples of top-down 

parsers. 

 Bottom-up parsing - A parser can start with the input 

and attempt to rewrite it to the start symbol. Intuitively, 

the parser attempts to locate the most basic elements, 

then the elements containing these, and so on. LR 

parsers are examples of bottom-up parsers. Another 

term used for this type of parser is Shift-Reduce parsing. 
 

Another important distinction is whether the parser 

generates a leftmost derivation or a rightmost derivation 

(see context-free grammar). LL parsers will generate a 

leftmost derivation and LR parsers will generate a 

rightmost derivation (although usually in reverse).     
 

LR Parser 

LR parser is an efficient, bottom-up syntax analysis 

technique that can be used to parse a large class of 

context-free grammars. This technique is called LR 

parsing; the “L” is for left-to-right scanning of the input, 

the “R” for constructing a rightmost derivation in reverse. 

The LR parser can be constructed to recognize virtually all 

programming language constructs for which context-free 

grammars can be written. The LR parsing method is the 

most general non-backtracking shift-reduce parsing 

method known, yet it can be implemented as efficiently as 

other shift-reduce methods. It can detect a syntactic error 

as soon as it is possible to do on a left-to-right scan of the 

input. 

In domain class dictionary the translation ambiguities 

occur when a linguistic term is associated with two or 

more domain classes. The ATN parsers operate top-down, 

with all the disadvantages that entails, principally in 

wasteful reiterated analysis of lower level constituents. 

The CFG is new approach to parsing for context-free 

grammars, which is conceptually very simple. The 

significance of our approach is supported by recent trends 

in computer-related fields. In computational linguistics, 

much attention has been drawn to parsing of context-free 

grammars owing to the progress of context- free based 

grammatical frameworks for NLs. The practical NL 

interface systems are based on context-free (phrase 

structure) grammars.  
   

III. ANALYSIS AND DESIGN 
 

A) System Architecture 

The system architecture of NL database interface 

developed is given in Figure 3.1, which depicts the layout 

of the processes included in converting NL query into a 

syntactical SQL query to be fired on the RDBMS. To 

process a query, the first step is speech tagging; followed 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                                DOI 10.17148/IJARCCE.2015.41143                                                    193 

by word tagging. The second step is parsing the tagged 

sentence by a grammar. The grammar parser analyzes the 

query sentence according to the tag of each word and 

generates the grammar tree/s. Finally, the SQL translator 

processes the grammar tree to obtain the SQL query. 

 The SQL translator generates query in technical language 

like SQL. From the input statement using grammar obtain 

the parse tree. After obtaining the parsed grammar tree, the 

next step is translating the leaves of the tree to the 

corresponding SQL. Actually the process is collecting the 

information from the parsed tree. 
 

 
 

Figure2.  Architecture of NLDBI System 
 

B) Design of Context Free Grammar 

The CFG has been used to describe a NL for a long time 

and it is the simplest statistical model to analyze NL. The 

NL sentences are transformed into a tree structure through 

CFG and the grammar tree is analyzed according to user‟s 

requirements. CFG is a more powerful method of 

describing language. CFG is used for understanding the 

relationship of terms such as noun, verb and preposition 

and their respective phrases leads to a natural recursion 

because noun phrases may appear inside verb phrases and 

vice versa. CFG can capture important aspects of these 

relationships 
 

 
 

Figure3.  Generation of SQL Query from English 

Statement 
 

Figure3. Depicts the processing of English input statement 

to generate SQL query. The entire process involves 

tagging of input statement, apply grammar and semantic 

representation to generate parse tree, analyze the parse tree 

using grammar and translating the leaves of the tree to 

generate corresponding SQL query.  

The database tables considered are EMP (empid, 

empname, salary, edepid, address, post, mobileno), DEPT 

(deptid, deptname, deptloc, dcapacity) and PROJECT (pid, 

pname, epid). From the input NL statement, to generate 

parse tree the grammar written is defined as tuple G = (V, 

∑, P, S) in which: 

Terminal set: ∑= {a, an, the, id, number, name, salary, 

income, earning, manager, boss, id, number, location, 

capacity, employee, worker, person, emp, employees, 

emps, workers, persons, project, projects, department, 

dept, dpt, departments, depts, dpts}, are the words 

corresponding to a leaf in the grammar tree. 

Non-terminal set: V= {WhatKeyBank, AAnTheBank, 

empid, empname, salary, mgrid, deptid, deptname, 

deptloc, dcapacity, EmpTable, ProjectTable, DeptTable}, 

which is used to generate terminals, corresponding to non-

leaf nodes in the grammar tree. 

Designated start symbol S, which is an input NL 

statement. 

P is set of rules: The grammar in the system consists of 

following rules; 

WhatKeyBank → for | of | with | is | where | whose | 

having | in | on 

AAnTheBank → a | an | the 

empid → integer | id | number 

empname →  string | name 

salary →  integer | salary | income | earning 

mgrid →  integer | manager | boss | superior  

edeptid →  integer | id | number 

deptid →  integer | id | number 

deptname →  string | name 

deptloc →  string | location 

dcapacity →  integer | capacity 

EmpTable → employee | worker | person | emp | 

employees | emps | workers |persons 

ProjectTable → project | projects 

DeptTable → department | dept | dpt | departments | depts | 

dpts 

The experimental work is to design an interface for 

generating queries from NL statements/questions. It also 

consists of designing a parser for the NL statements, 

which will parse the input statement, generate the 

technical query and fire it to the end-database. The 

experimental work will understand the exact meaning the 

end user wants to go for, generate a what- type sentence 

and then convert it into a query and give it to the interface. 

The interface further processes the query and searches for 

the database. The database gives the result to the system 

and the result is displayed to the user. 
 

C) Use of LEX and YACC 

The UNIX utility LEX parses a file of characters. It uses 

regular expression matching. Typically it is used to 

„tokenize‟ the contents of the file. In that context, it is 

often used together with the YACC utility. The UNIX 

utility YACC parses a stream of token, typically generated 

by LEX, according to a user-specified grammar. 
 

i) Structure of a LEX file: 

A LEX file looks like: 

 ...definitions... 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                                DOI 10.17148/IJARCCE.2015.41143                                                    194 

%% 

     ...rules... 

%% 

     ...code... 
 

Definitions: All code between %{ and %} is copied to the 

beginning of the resulting C file. 

Rules: A number of combinations of pattern and action: if 

the action is more than a single command it needs to be in 

braces. 

Code: This can be very elaborate, but the main ingredient 

is the call to yylex, the lexical analyzer. If the code 

segment is left out, a default main is used which only calls 

yylex. 
 

ii) Structure of a YACC file 

A YACC file looks much like a LEX file: 

 ...definitions... 

%% 

      ...rules... 

%% 

      ...code... 

Definitions: As with LEX, all code between %{ and %} is 

copied to the beginning of the resulting C file.  

Rules: As with LEX, a number of combinations of pattern 

and action. The patterns are now those of a context-free 

grammar, rather than of a regular grammar as was the case 

with LEX. 

Code: This can be very elaborate, but the main ingredient 

is the call to yyparse, the grammatical parse. 
 

D) Pushdown Automata 

 A pushdown automaton (PDA) is essentially a 

finite state automaton augmented with an auxiliary tape on 

which it can read, write, and erase symbols. Its transitions 

from state to state can depend not only on what state it is 

in and what it sees on the input tape but also on what it 

sees on the auxiliary state, and its actions can include not 

only change of state but also operations on the auxiliary 

tape. The auxiliary tape works as a pushdown store, “last 

in, first out”, like a stack of plates in some cafeterias. You 

can‟t „see‟ below the top item on the stack without first 

removing (erasing) that top item.  
 

 
 

Figure4. Pushdown Automata for given CFG 

Figure4.  Shows the pushdown automata (PDA) for the 

above context free grammar.  The above PDA accepts the 

different NL statements, such as “The salary of an 

employee”. 
 

A PDA is a class of machines recognizing the context free 

languages. Pushdown automata are equivalent in power to 

context free grammars. This equivalence is useful because 

it gives us two options for providing that a language is 

context free. We can give either a context free grammar 

generating it or a pushdown automata recognizing it. The 

context free grammar generates NL statement and the 

above pushdown automata recognize it.    
 

IV. ALGORITHMS AND RELATED THEORY 
 

The algorithm is designed to generate SQL query from NL 

statement. Microsoft visual C# and VC++ tools are used to 

implement the NLDBI system. The YACC is used to 

check whether the NL statement follows the defined CFG 

or not.  
 

A. Algorithm 

The algorithm used to generate SQL query from NL 

statement is as follow:   

The user has input statement to system in NL. First step is 

to tag the input statement and then each word of statement 

to be tagged. Second step is the tagged words are checked 

with grammar and stored it into symbol table. The words 

from symbol table are extracted and checked with 

appropriate grammar and if the matching word is found it 

is used to generate the query. The system first converts 

input statement into standard what- type question/s and 

then the question is to convert it into SQL query and fire 

on the database to display the results to the user. 
 

 
 

Figure5. Algorithm Generation of Parse Tree/s for input 

Statement Using Grammar. 
 

B. Tools Used 

The system is built using Microsoft Visual C++ 

programming language and it is run with the help of 

software Microsoft Visual C#.NET with Microsoft .NET 

Framework 2.0. The C#.NET is used to create the UI for 

NLDBI system and VC++ 2005 is used to write grammar 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                                DOI 10.17148/IJARCCE.2015.41143                                                    195 

and generate parse tree/s to convert NL statement to SQL 

query. 
 

i) Visual C# and Visual C++:  

Microsoft Visual C# is Microsoft's implementation of the 

C# programming language specification, included in the 

Microsoft Visual Studio suite of products. The term Visual 

denotes a brand-name relationship with other Microsoft 

programming languages such as Visual Basic, Visual 

FoxPro, Visual J# and Visual C++. All of these products 

are packaged with a graphical integrated development 

environment (IDE) and support rapid application 

development of Windows-based applications. C# is a 

multi-paradigm programming language encompassing 

imperative, functional, generic, object-oriented (class-

based), and component-oriented programming disciplines. 

C# is one of the programming languages designed for the 

Common Language Infrastructure. C# is intended to be a 

simple, modern, general-purpose, object-oriented 

programming language. 
 

Microsoft Visual C++ is a commercial IDE product 

engineered by Microsoft for the C, C++, and C++/CLI 

programming languages. It has tools for developing and 

debugging C++ code, especially code written for the 

Microsoft Windows API, the DirectX API, and the 

Microsoft .NET Framework. Visual C++ 2005 enables 

you to write managed applications for the .NET 

Framework that take advantage of the number of classes in 

the .NET Framework Class Library, including features 

such as garbage collection. The Visual C++ 2005 for 

writing simple yet powerful code for the .NET 

Framework's Common Language Runtime. Using Visual 

C++, you can write class libraries, console applications, or 

Windows Forms applications. Visual C++ 2005 also lets 

you use C++ to build 32-bit native code console 

applications that have access to the full Standard C and 

C++ libraries. You can also mix native and managed code 

in a single project, giving you the flexibility to use existing 

libraries as well as .NET Framework classes in the same 

application. 

Visual C++ 2005 includes the Standard Template Library 

(STL). STL is a general purpose library of algorithms and 

data structures that is based on a concept known as generic 

programming. The library includes the container classes-

such as vector, queue, list, and map-that are implemented 

using C++ templates. These work with any data type, 

including both built-in types as well as any types you 

define yourself. 

 

ii) YACC:  

YACC is a parser that used to find the given statement is 

follows the defined CFG. The working of LEX and YACC 

as follows:  

Figure 6. illustrates the file naming conventions used by 

lex and yacc. First, we need to specify all pattern matching 

rules for lex (nlq.l) and grammar rules for yacc (nlq.y). 

Commands to create our compiler, nlq.exe, are listed 

below: 

Yacc reads the grammar descriptions in nlq.y and 

generates a syntax analyzer (parser) that includes function 

 
 

Figure6. Building a compiler with LEX/YACC. 
               
yyparse, in file y.tab.c. Included in file nlq.y are token 

declarations. The   –d option causes yacc to generate 

definitions for tokens and place them in file y.tab.h. Lex 

reads the pattern descriptions in nlq.l, includes file y.tab.h, 

and generates a lexical analyzer that includes function 

yylex, in file lex.yy.c. 

Finally, the lexer and parser are compiled and linked 

together to form the executable, nlq.exe. From main, we 

call yyparse to run the compiler. Function yyparse 

automatically calls yylex to obtain each token. 
 

V. CONCLUSION 
 

The NL statement is converted into machine 

understandable form such as SQL. The experimental work 

understands the exact meaning the end user wants to go 

for, generates a query and gives it to the interface. The 

interface further processes the query and fires on the 

database. The results are extracted from the database and 

displayed to end user. The NLDBI system is tested for 

more than 75 different NL input statements and the system 

works satisfactorily. The advantage of NLDBI system is 

that it works on a Relational database, also ambiguity 

among the words is removed.  
 

The NL input statements are compared with the standard 

YACC tool to check that the statement follows the defined 

CFG. More than 14 different NL input statements parsed 

correctly by the YACC. 
 

The Future Scope of NLDBI systems are as follows. 
 

 There is a need to translate NL statement into what- 

type question and finally, the what- type question is to 

be translated into SQL- query. 

 Limited Data Dictionary (EMP, DEPT and PROJECT). 

 All the input names need to be in double quotes and 

also the system considers only selection of data. 
 

So far, our NLDBI system considers selection of data and 

performing queries onto the database and JOINS operation 

with some constraints. The CFG is enhanced to generate 

unambiguous parse tree. The next step of research would 

be to optimize grammar to accommodate more complex 

queries with emphasis to incorporate update, insert and 

delete commands in the application as well. Interface 

which solely use keyboard input of natural language are 

not likely to be  practical; in the long term, the use of 

spoken input is more likely to be the route to practical 

success. 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                                DOI 10.17148/IJARCCE.2015.41143                                                    196 

REFERENCES 
 

[1]   Bei-Bei Huang, Guigang Zhang, Phillip C-Y Sheu “A Natural 
Language Database Interface Based On Probabilistic Context Free 

Grammar” The State Key Laboratory of Software Engineering, 

Wuhan University, Wuhan 430072, China, Department of EECS, 
University of California, Irvine 92697, USA,2008. 

[2] In-Su Kang, Jae-Hak J. Bae, Jong-Hyeok Lee “Database Semantics 

Representation for Natural Language Access”. Department of 
Computer Science and Engineering, Electrical and Computer 

Engineering Division Pohang University of Science and 

Technology (POSTECH) and Advanced Information Technology 
Research Center (AITrc), 2002. 

[3] Woods, W., Kaplan, R. “Lunar rocks in natural English: Explorations 

in natural language question answering”. Linguistic Structures 
Processing. In Fundamental Studies in Computer Science, 5:521-

569, 1977. 

[4] Androutsopoulos, I., Richie, G.D., Thanisch, P. “Natural Language 
Interface to Database – An Introduction”. Journal of Natural 

Language Engineering, Cambridge University Press. 1(1), 29-81, 

1995. 

[5] Linguistic Technology. English Wizard – Dictionary Administrator's 

Guide. Linguistic Technology Corp., Littleton, MA, USA, 1997. 

 [6] Akama, S. (Ed.) Logic, language and computation, Kulwer 
Academic publishers, pp. 7-11, 1997. 

[7] ELF Software CO. Natural-Language Database Interfaces from ELF 

Software Co, cited November 1999. 
[8] Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D., Slocum, J. 

“Developing a natural language interface to complex data”, in 

ACM Transactions on database systems, 3(2), pp. 105-147, 1978. 
[9] Joseph, S.W., Aleliunas, R. “A knowledge-based subsustem for a 

natural language interface to a database that predicts and explains 

query failures”, in IEEE CH, pp. 80-87, 1991. 
[10] Mitrovic, A. A knowledge-based teaching system for SQL, 

University ofCanterbury, 1998. Moore, J.D. “Discourse generation 
for instructional applications: making computer tutors more like 

humans”, in Proceedings AI-ED, pp.36-42, 1995. 

[11] Suh, K.S., Perkins, W.C., “The effects of a system echo in a 
restricted natural language database interface for novice users”, in 

IEEE System sciences, 4, pp. 594-599, 1994. 

[12] Weisenbaum, J., “ELIZA: A Computer program for the study of 

natural language communication between man and machine”, 

Communications of the ACM, 9(1), 1966. 

[13] Whenhua, W., Dilts, D.M. “Integrating diverse CIM data bases: the 
role of natural language interface”, in IEEE Transactions on 

systems, man, and cybernetics, 22(6), pp. 1331-1347, 1992. 

[14] Wintraecken, J.J.V.R. 1990. The NIAM Information Analysis 
Method: theory and practice. Dordrecht: Kluwer Academic. 


	Algorithm

